Semantic Structure From Motion

Sid Yingze Bao and Silvio Savarese

Electrical and Computer Engineering, University of Michigan at Ann Arbor

Source code and data: http://www.eecs.umich.edu/vision/projects/ssfm/index.html

Introduction

Goal:
Estimate 3D location and pose of objects, 3D location of points, and camera parameters from 2 or more images.

Motivation:
- Most 3D reconstruction methods do not provide semantic information.
- Most recognition methods do not provide geometry and camera pose.
- We propose to solve these two problems jointly.

Advantages:
- Improve camera pose estimation, compared to feature-point-based SFM.
- Improve object detections given multiple images, compared to independently detecting objects from each single image.
- Establish object correspondences across views.

SSFM Problem Formulation

Measurements
- \(q \): point features (e.g., DOG+SIFT)
- \(u \): point matches (e.g., threshold test)
- \(o \): 2D objects (e.g., [2])

Model Parameters (unknowns)
- \(C \): camera (\(K \) is known)
- \(Q \): 3D points (locations)
- \(O \): 3D objects (locations, poses, categories)

Intuition:
In addition to point features, measurements of objects across views provide additional geometrical constraints that allow to relate cameras and scene parameters.

Model Overview

\[
\{O,Q,C\} = \text{arg max} \; P(q,u|C,Q)P(o|C,O) \\
= \text{arg max} \; P(q,u|C,Q)P(o|C) \\
\]

Point Likelihood
\[
P(q,u|C,Q) = \prod_{i} \prod_{j} \exp(-\|q_i - u_{ij}\|^2 / \sigma_i^2) \\
\]

Object Likelihood
\[
P(o|C,O) = \prod_{i} \left(1 - P(o_i|C,o_i^*) \right) \\
\]

Assumption:
Given camera hypothesis, objects and points are independent

Joint Likelihood Maximization

Main challenge:
High dimensionality of unknowns => Sample \(P(q,u,o|C,Q,O) \) with MCMC

Parameter Initialization
- Use object detection scale and pose to initialize cameras relative poses
- Theorem: camera parameters can be estimated given:
 i) 3 objects with scale; ii) 2 objects with pose; iii) 1 object with scale and pose.

Monte Carlo Markov Chain
- Sampling starts from different initializations
- Proposal distribution \(P(q,u,o|C,O,Q) \)
- Combine all samples to identify the maximum

Results

Comparison Baselines
- Camera Pose Est.: Bundler [1]
- Object Detection: LSVM [2]

1. **Car Dataset [3] (available online)**
 - Images and Dense Lidar Points
 - ~500 testing images in 10 scenarios

2. **Kinect Office Dataset (available online)**
 - Images and calibrated Kinect 3D range data
 - Mouse, Monitor, and Keyboard
 - 500 images in 10 scenarios

3. **Person Dataset**
 - A pair of stereo cameras
 - 400 image pairs in 10 scenarios

Reference

Acknowledgement

We acknowledge the support of NSF CAREER #1054127 and the Gigascale Systems Research Center. We thank Mohit Bagra for collecting the Kinect dataset and Min Sun for helpful feedback.